已经得到个称赞     给我点赞
  • 教授
  • 博士生导师
  • 教师拼音名称:Song KeWei
  • 所在单位:机电工程学院、铁道车辆热工教育部重点实验室
  • 办公地点:兰州交通大学机电工程学院(尚德楼)
  • 联系方式:QQ:376768922
  • 学位:博士学位
  • 学科:工程热物理
    车辆工程
    动力工程及工程热物理其他专业
    热能工程
    化工过程机械
    动力机械及工程
    制冷及低温工程
    机械工程其他专业
论文成果
当前位置: 中文主页 >> 科学研究 >> 论文成果

72. Performance improvement of a thermal management system for Lithium-ion power battery pack by the combination of phase change material and heat pipe. Journal of Energy Storage. 2024, 82, 110512.      IF=9.400

71. Thermal performance promotion of a novel double-tube heat exchanger by helical fin with perforations. International Communications in Heat and Mass Transfer, 2024, 150, 107189.      IF=7.0

70. Thermal performance improvement of a circular tube-and-fin heat exchanger by ellipsoidal protrusions on fin surfaces. International Journal of Thermal Sciences, 2024, 196, 108746.      IF=4.779

69. Performance optimization of a wavy finned-tube heat exchanger with staggered curved vortex generators. International Journal of Thermal Sciences 2023(183):107830.      IF=4.779

68. Thermal hydraulic performance augmentation by petal-shaped ribs in a two-pass cooling channel. Case Studies in Thermal Engineering, 2022, 40, 102542.      IF=6.268

67. Thermodynamic characteristics of a novel combination of three-start twisted tube and oval dimples. Case Studies in Thermal Engineering, 2022(37) 102284.     IF=6.268

66. Thermal-hydraulic characteristic of a novel wavy fin-and-circle tubeheat exchanger with concave curved vortex generators. Int. J. Heat Mass Tran., 194 (2022) 123023.     IF=5.431

65. Heat transfer enhancement of a double pipe heat exchanger by Co-Twisting oval pipes with unequal twist pitches. Case Studies in Thermal Engineering, 28(2021), 101411.     IF=6.268

64. The optimal longitudinal location of curved winglets for better thermal performance of a finned-tube heat exchanger.International Journal of Thermal Sciences,167(2021)107035.     IF=4.779

63. Thermal performance enhancement of a double-tube heat exchanger with novel twisted annulus formed by counter-twisted oval tubes, International Journal of Thermal Sciences, 164 (2021) 106892.     IF=4.779

62. Heat transfer enhancement in a novel annular tube with outer straight and inner twisted oval tubes, Symmetry, 12 (8) (2020), 1213.     IF=2.940

61. Effects of Inclination Angle of Vortex Generator on Fluid Flow and Heat Transfer Characteristics of Heat Exchanger, Tuijin Jishu/Journal of Propulsion Technology, 41 (4) (2020) 868-874.

60. Numerical study of the intensity correlation between secondary flow and heat transfer of circle tube-finned heat exchanger with vortex generators CMES - Computer Modeling in Engineering and Sciences, 123 (1) (2020) 237-256.

59. Thermal performance of a zig-zag channel formed by two wavy fins mounted with vortex generators. International Journal of Thermal Sciences, 153 (2020) 106361.    IF=4.779

58. Flow symmetry and heat transfer characteristics of winglet vortex generators arranged in common flow up configuration, Symmetry 12 (2020) 247.    IF=2.940

57. Characteristics of flow symmetry and heat transfer of winglet pair in common flow down configuration, Symmetry 12 (2020) 209.     IF=2.940

56. Thermo-hydraulic performance optimization of wavy fin heat exchanger by combining delta winglet vortex generators. (2019) Applied Thermal Engineering, 163,  114343.     IF=6.465

55. Stability of an axisymmetric liquid metal flow driven by a multi-pole rotating magnetic field. (2019) Fluids, 4 (2), 77

54. Heat transfer characteristics of concave and convex curved vortex generators in the channel of plate heat exchanger under laminar flow. (2019) International Journal of Thermal Sciences, 137, pp. 215-228.  IF=4.779

53. Thermomagnetic convection of paramagnetic gas in an enclosure under no gravity condition. (2019) Fluids, 4 (1), 49. 

52. The optimal arrangement of vortex generators for best heat transfer enhancement in flat-tube-fin heat exchanger (2018) International Journal of Thermal Sciences, 132, pp. 355-367.     IF=4.779

51. Effects of fin pitch and tube diameter on the air-side performance of tube bank fin heat exchanger with the fins punched plane and curved rectangular vortex generators (2018) Experimental Heat Transfer, 31 (4), pp. 297-316.    IF=3.272

50. Thermomagnetic convection of oxygen in a square enclosure under non-uniform magnetic field (2018) International Journal of Thermal Sciences, 125, pp. 52-65. IF=4.779

49. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators (2017) Heat and Mass Transfer/Waerme- und Stoffuebertragung, 53 (10), pp. 3013-3026. 

48. Effect of geometric size of curved delta winglet vortex generators and tube pitch on heat transfer characteristics of fin-tube heat exchanger. Experimental Thermal and Fluid Science 04/2017; 82: 8-18.  IF=3.37

47. KeWei Song, LiangBi Wang: Effects of longitudinal vortex interaction on periodically developed flow and heat transfer of fin-and-tube heat exchanger. International Journal of Thermal Sciences 11/2016; 109: 206-216. IF=4.779

46. KeWei Song, WanLing Hu, Song Liu, LiangBi Wang: Quantitative relationship between secondary flow intensity and heat transfer intensity in flat-tube-and-fin air heat exchanger with vortex generators. Applied Thermal Engineering 06/2016;103:1064-1070.    IF=6.465

45. Fei Duan, KeWei Song, HouRan Li, LiMin Chang, YongHeng Zhang, LiangBi Wang: Numerical study of laminar flow and heat transfer characteristics in the fin side of the intermittent wavy finned flat tube heat exchanger. Applied Thermal Engineering 06/2016; 103: 112-127.    IF=6.465

44. KeWei Song, Song Liu, LiangBi Wang: Relationship between longitudinal vortex intensity and heat transfer intensity of flat tube heat exchanger. CIESC Journal 05/2016; 67: 1858-1867.

43. KeWei Song, Song Liu, LiangBi Wang: Interaction characteristics between longitudinal vortices with counter-rotating directions in heat exchanger channel. CIESC Journal 04/2016; 67: 1233-1243.  

42. JingFa Li, KeWei Song, Yi Wang, Bo Yu: A grid coarsening strategy for algebraic multigrid method based on local information priority principle. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics 04/2016; 37: 851-858.

41. KeWei Song, Song Liu, LiangBi Wang: Interaction of counter rotating longitudinal vortices and the effect on fluid flow and heat transfer. International Journal of Heat and Mass Transfer 02/2016; 93:349-360.    IF=5.431

40. XiaoYan Zhang, JinLong Zhang, KeWei Song, LiangBi Wang: Numerical study of the sensing mechanism of the oxygen concentration sensor based on thermal magnet convection. International Journal of Thermal Sciences 01/2016; 99:71-84.     IF=4.779

39. KeWei Song, Liang-Bi Wang: Effects of interaction of longitudinal vortices on the flow field and heat transfer over a flat-tube-and-fin heat exchanger. Journal of Enhanced Heat Transfer 01/2015; 21(6):439-462.

38. LiangChen Wang, LiMing Chang, LiangBi Wang, KeWei Song, YongHeng Zhang, Xiang Wu: Analysis of the reusability of the energy of the exhaust gas from the calciner for the production of carbon. Energy 12/2014; 78:439-450. IF=8.857

37. KeWei Song, LiangBi Wang, BiQi Li: Numerical study of magneto-thermal natural convection of air in a square enclosure. Journal of Lanzhou Jiaotong University 12/2014; 23(6):105-109.

36. KeWei Song, Toshio Tagawa, Liangbi wang, Hiroyuki Ozoe: Numerical investigation for the modeling of the magnetic buoyancy force during the natural convection of air in a square enclosure. Advances in Mechanical Engineering 05/2014; 2014(Article ID 873260):11 pages.

35. KeWei Song, WenKai Li, Yang Zhou, YuanRu Lu: Numerical study of buoyancy convection of air under permanent magnetic field and comparison with that under gravity field. Mathematical Problems in Engineering 09/014; 2014(Article ID 494585): 13 pages.

34. KeWei Song, Yang Zhou, WenKai Li, YuanRu Lu: Numerical study of magneto thermal free convection of air under non-uniform permanent magnetic field. Communications in Computer and Information Science 09/2014; 463:55-65.

33. KeWei Song, Lian-Bi Wang: The effectiveness of secondary flow produced by vortex generators mounted on both surfaces of the fin to enhance heat transfer in a flat tube bank fin heat exchanger. Journal of Heat Transfer 04/2013; 135(4):041902.  IF=1.855

32. WanLing Hu, KeWei Song, Yong Guan, L-Min Chang, Song Liu, Lian-Bi Wang: Secondary flow intensity determines Nusselt number on the fin surfaces of circle tube bank fin heat exchanger. International Journal of Heat and Mass Transfer 07/2013; 62(1):620-631. IF=5.431

31. Wei Zhang, Mei Su, KeWei Song, ZhiMin Lin, LiangBi Wang: Study of absolute vortex flux along the main flow direction in a channel formed by tube bank plain fins. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics 10/2011; 32(10):1734-1736

30. Mei Su, ZhiMin Lin, Ye Wang, KeWei Song, Liangbi Wang: The criteria of convergence in conjugated simulation of fluid flow and heat transfer in the channel formed by tube bank fins. Progress in Computational Fluid Dynamics An International Journal 06/2011; 11(3).

29. KeWei Song, Ye Wang, Qiang Zhang, LiangBi Wang, Yan-Jun Liu: Numerical study of the fin efficiency and a modified fin efficiency formula for flat tube bank fin heat exchanger. International Journal of Heat and Mass Transfer 05/2011; 54(11):2661-2672.  IF=5.431

28. LiangBi Wang, ZhiMin Lin, Xiang Wu, KeWei Song: Differences between laminar convections through parallel plain planes with uniform wall temperature and heat flux in terms of process parameter. Science China Technological Sciences 03/2010; 53(3):789-799.

27. LiangBi Wang, ZhiMin Lin, KeWei Song, Xiang Wu, Kun Hong: Splitting the contributions of velocity and velocity gradient to the transport of heat flux in laminar convection through a square duct with uniform wall temperature. Computational Thermal Sciences 01/2010; 2(5):439-454.

26. LiMin Chang, LiangBi Wang, KeWei Song, DongLiang Sun, JuFang Fan: Numerical study of the relationship between heat transfer enhancement and absolute vorticity flux along main flow direction in a channel formed by a flat tube bank fin with vortex generators. International Journal of Heat and Mass Transfer 03/2009; 52(7):1794-1801.

25.  Experimental and numerical analysis of heat transfer and flow characteristics on the air side of a flat tube bank plain fin heat exchanger. Computational Thermal Sciences 01/2009; 1(4):441-460.

24. Comparisons of local experimental results with numerical results of heat transfer enhancement of a flat tube bank fin with vortex generators. Numerical Heat Transfer Applications 01/2009; 55(2):144-162.

23. KeWei Song, LiangBi Wang, DongLiang Sun: Convective heat transfer and absolute vorticity flux along main flow in a channel formed by flat tube bank fins with vortex generators mounted on both fin surfaces. Journal of Enhanced Heat Transfer 03/2009; 16(2):123-139. DOI:10.1615/JEnhHeat Transf.v16.i2.30  IF=2.449

22. Comparsion of the fin eff iciencies of flat tube fin heat exchange obtained by different methods. Journal of Lanzhou Jiaotong University 2009; 28(3): 144-147

21. Comparison of heat transfer performance of tube bank fin with mounted vortex generators to tube bank fin with punched vortex generators. Experimental Thermal and Fluid Science 10/2008; 33(1-33):58-66.

20. Tube transverse pitch effect on heat/mass transfer characteristics of flat tube bank fin mounted with vortex generators. Journal of Heat Transfer 06/2008; 130(6).

19. Numerical study of heat transfer enhancement of finned flat tube bank fin with vortex generators mounted on both surface of the fin. Heat and Mass Transfer 05/2008; 44(8):959-967.

18. Relationship between heat transfer intensity and absolute vorticity flux intensity in flat tube bank fin channels with Vortex Generators. Progress in Computational Fluid Dynamics An International Journal 01/2008; 8(7).

17. Numerical study of flat-tube bank fin heat exchanger with vortex generators mounted on both sides of fin. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics 08/2007; 28:89-92

16. Flow visualization and numerical simulation about the interactions of vortices. Journal of Lanzhou Jiaotong University 12/ 2005; 24(6): 10-13

15. Quantitative relationship between secondary flow intensity and heat transfer intensity in the fin-side channel of flat tube bank fin heat exchanger. The 5th Asian Symposium on Computational Heat Transfer and Fluid Flow, Busan, 2015.11.22-2015.11.25

14. A grid coarsening strategy of algebraic muligrid method based on local information priority principle, The 5th Asian Symposium on Computational Heat Transfer and Fluid Flow, Busan, 2015.11.22-2015.11.25

13. The effect of interaction of longitudinal vortices on fluid flow and heat transfer performance of heat exchanger. Proceeding of Annual meeting of Chinese society of Engineering ThermalPhysics-2015; paper ID 153433, DaLian, China, Oct. 30-Nov.2, 2015

12. Secondary flow intensity determines the heat transfer intensity of the flat tube bank fin heat exchanger with vortex generators. Proceeding of Annual meeting of Chinese society of Engineering ThermalPhysics-2014; paper ID 143441, Xi’an, China, November, 2014 

11.  Interactions of vortices and the augmentation of heat transfer in a flat tube bank fin heat exchanger by vortex generators: The 4th Asian Symposium on Computational Heat Transfer and Fluid Flow (Proceedings of ASCHT2013), June 3-.6, HongKong, 2013

10. The application of the non dimensional secondary flow intensity parameter in the tube and fin heat exchanger with vortex generators. Proceeding of Annual meeting of Chinese society of Engineering ThermalPhysics-2012; paper ID 123241, Dongguan, China, November, 2012

9. The criteria of convergence in conjugated simulation of fluid flow and heat transfer in the channel formed by tube bank fins, 2nd Asian Symposium on Computational Heat Transfer and Fluid Flow (Proceedings of ASCHT09), Oct. 20-23, Jeju, 2009

8. The contribution of secondary flow induced by flat tube bank to convective heat transfer in a channel formed by flat tube bank fins, 2nd Asian Symposium on Computational Heat Transfer and Fluid Flow (Proceedings of ASCHT09), Oct. 20-23, Jeju, 2009

7. Checking the robustness of numerical method comparing with local experimental results, International Conference on System Design – 2008, Dec 10-12, Tokyo, 2008

6. Numerical study of relationship of heat transfer intensity and absolute vortex flux intensity of flat tube bank fin with vortex generators mounted on both surfaces of fin. Asian Symposium on Computational Heat Transfer and Fluid Flow, Xi'an, CHINA, October, 2007.

5.  “Heat transfer enhancement by optimizing the arrangement of vortex generators in flat-tube-fin heat exchanger”, The 11th Pacific Symposium on Flow Visualization and Image Processing, 1-3 December, 2017, kumamoto, Japan

4. “Effects of permanent magnet location and size on thermomagnetic convection in the air-filled square enclosure in zero gravity space”, The 6th Asian Symposium on computational Heat Transfer and Fluid Flow (ASCHT2017), No. 281, 10-13 December, 2017, Chennai, India.

3. “Effects of concave and convex curved vortex generators on heat transfer enhancement of plate-fin heat exchanger”, The 6th Asian Symposium on computational Heat Transfer and Fluid Flow (ASCHT2017), No. 282, 10-13 December, 2017, Chennai, India.

2. “Linear stability analysis for natural convection of liquid metal in the presence of a uniform magnetic field”, The 6th Asian Symposium on computational Heat Transfer and Fluid Flow (ASCHT2017), No. 283, 10-13 December, 2017, Chennai, India.

1. “Spin-up from rest of a liquid-metal free-surface flow in the presence of an axial magnetic field”, The 6th Asian Symposium on computational Heat Transfer and Fluid Flow (ASCHT2017), No. 284, 10-13 December, 2017, Chennai, India.